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Equilibrium boundary layers in moderate to strong 
adverse pressure gradients 
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(Received 1 October 1980 and in revised form 15 April 1981) 

An analysis of equilibrium boundary layers based on the Schofield-Perry defect law, 
which applies to flow in a moderate to strong adverse pressure gradient, is presented. 
The conditions derived for self-preserving or equilibrium boundary layers differ from 
those given by previous analyses based on the usual velocity-defect law. It is shown 
that twelve observed boundary layers on smooth walls conform to these new conditions 
for precise equilibrium flow. As the analytical expression for the Schofield-Perry 
defect law does not vary with pressure gradient, a specific expression for the shear- 
stress profile in any equilibrium layer can be derived. The predicted shear-stress 
profiles show good agreement with experimental data. Limits for the flow parameters 
within which equilibrium layers can exist are derived, and it is shown that observed 
equilibrium layers fall within these limits. A prediction method for layers in smoothly 
changing adverse-pressure gradients is outlined and demonstrated using equilibrium 
data. The unified account of equilibrium flow in adverse pressure gradients presented 
here is used to  resolve some disagreements in the literature concerning existence 
conditions for equilibrium boundary layers. 

1. Introduction 
The numerous papers that have been published on turbulent boundary layers 

developing in adverse pressure gradients attest both the engineering significance of 
the problem and its intractability. A review of this literature does not inspire hope 
that a general analysis of these flows will be available in the near future. A central 
difficulty in attempting any such analysis is that  the outer region of a turbulent 
boundary layer possesses a complex nonlinear memory of events upstream and hence 
velocity distributions at  any position depend on both upstream as well as local con- 
ditions. To reduce the complexity of the problem Clauser (1954) set out to  study a 
subset of adverse-pressure-gradient boundary layers that had a constant force history 
and could thus be described by local parameters alone. As the external forces acting 
on a boundary layer arise from the pressure gradient dpldx and the wall shear stress 
T ~ ,  a layer with a constant force history (an equilibrium layer) was conceived by 
Clauser as a layer in which the non-dimensional force ratio 

(where S* is the displacement thickness of the boundary layer) was held constant 
throughout the layer’s development. Clauser expected such equilibrium layers to be 
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dynamically similar at  all stations in both the mean and fluctuating velocity fields.? 
Clauser did not, however, use this force ratio to set up his experimental flows. He 
worked instead by analogy from the only equilibrium layer that was then known, the 
zero-pressure-gradient layer where /3, = 0 as dp/dx  = 0. It was well established that 
for this case the mean-velocity-defect law 

(where U, is the free-stream velocity, 6 the total layer thickness, p is the fluid 
density and u, = ~ $ p - * )  accurately described the mean velocity from the free stream 
down almost to the wall. Clauser reasoned that a defect law of the same form should 
apply to equilibrium layers in pressure-gradient flows. Therefore Clauser adjusted the 
pressure gradient acting on a two-dimensional boundary layer until mean flow profiles 
along the layer agreed with an equation in the defect form of equation (1). Two such 
layers in adverse pressure gradient were produced. By defining equilibrium layers in 
terms of equation (1) Clauser tacitly assumed that the length and velocity scales for 
zero-pressure-gradient flow (6, uT) were the relevant scales for equilibrium layers in 
adverse-pressure-gradient flow. Later work showed that this assumption causes 
analytical and conceptual difficulties for equilibrium layers near separation where 
u, approaches zero. 

Townsend analysed Clauser's flows in the first of a series of important papers 
(Townsend 1956a, b, 1960, 1961a, b, 1965a, b) in which his self-preserving$ flow 
analysis was developed. In  this analysis self-preserving forms for the mean and 
fluctuating components are assumed, so that 

etc., where primes denote fluctuating quantities and uo and I ,  are (as yet) undefined 
velocity and length scales of the flow. These relations are substituted into the equation 
of motion, 9 and for self-preserving flow to be possible it is necessary that in the 
resulting equation the coefficients of the various terms should either be zero or pro- 
portional to each other, i.e. it must be possible to remove x from the equation. This 
stipulation produces relationships between I , ,  uo and x, U, which are the conditions for 
self-preserving flow. Both Townsend (1956a, b, 1961a, b) and Rotta (1962) have 
applied this method to boundary-layer flow in adverse pressure gradients. A good 
summary of these results and their implications is given by Rotta who took the 
length and velocity scales as 6*U,/u, and u?, respectively, and showed that the con- 
ditions for self-preserving flow were 

u,/U, = const., dS/dx = const., 
with the corollary 

/3, = const. 

Equation ( 3 c )  implies that these self-preserving layers are the equilibrium layers that 
were originally conceived by Clauser. Rotta (1962) lists six combinations of pressure 

t The small eddy end of the turbulence spectrum was to be excluded from this dynamic 
similarity. 

Townsend reserves the term 'equilibrium' to describe a different property of turbulent 
flow, see Townsend (1976, p. 139). 

5 To make the analysis possible, viscous and normal stress terms are omitted from the 
equations of motion, implying accuracy only at  high Reynolds numbers. 
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gradient and wall-roughness distribution that will satisfy equation (3). The listing 
shows that adverse-pressure-gradient equilibrium layers require a free-stream velocity 
variation of the form 

U, = a(z-zJm (m < 0) .  (4) 

Stratford (1959) reported measurements in boundary layers which were held at 
incipient separation. These flows are of considerable theoretical interest because if 
u, = 0 then /3, = oc), which is a limiting case for equilibrium layers. Stratford claimed 
that his mean velocity profiles near the wall did not contain a logarithmic region? but 
correlated instead with a half-power law of the form 

u = const. (ay)++ const. (av)*, (5) 

where a = (l/p) dp /dx  and v is the kinematic viscosity of the fluid. 
Townsend (1960, 1961b, 1976) and Mellor & Gibson (1966) have both presented 

analyses of equilibrium layers in adverse pressure gradients which include the limiting 
case p, = co. These analyses show that the use of u, as the velocity scale for equilibrium 
layers presents serious problems for layers with values of u, near zero. Firstly, as 
u, -+ 0 the logarithmic law of the wall, which forms the inner portion of the flow 
description, disappears. Secondly, the question arises : what does a defect law given 
by equation (1)  mean for the case u, = 0 ? These difficulties were overcome by adopting 
a new velocity scale for analysing equilibrium layers in strong adverse pressure 
gradients. This velocity scale was based on a mainly because Stratford’s experi- 
mental results for layers near separation suggested that mean velocity near the wall 
depended on a. Thus Mellor & Gibson (1966) and Townsend (1960, 1961 b, 1976) using 

up = (as*)+, (6) 

up = (as)* 

and Kader & Yaglom (1978) and Yaglom (1979) using 

and various closure hypotheses, were able to analyse near-separating equilibrium 
layers. These and other authors have arrived at  specific conclusions concerning the 
nature of equilibrium flow and the limits in flow parameters for the existence of 
equilibrium layers. These conclusions show significant disagreements on the following 
points : 

(i) the limits of m within which equilibrium layers can exist; 
(ii) the number of equilibrium layers that can exist for a given set of initial and 

(iii) the relationship between m and the velocity scale ratio (u,/U,) of an equilibrium 

(iv) the appropriate velocity scale for equilibrium layers near separation. 
Townsend (1960, 1961 b, 1976) calculates that, for agiven set ofinitial and boundary 

conditions, two different equilibrium layers are possible if m < - 0.25. However, he 
also notes (Townsend 1976, p. 279) that experimental results indicate that two 
equilibrium layers can apparently exist for m near -0.23, which is numerically 
smaller than his calculated limit. The calculations also show that the smallest value 

7 Detailed analysis by Coles & Hirst (1968) showed however that most of his layers did have 

boundary conditions ; 

layer; 

small logarithmic regions and the wall shearing stress, although small, was not zero. 

4-2 
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of m for which an equilibrium layer can exist depends on Reynolds number and is - 4 
for an infinite Reynolds number increasing to - 0.28 for a Reynolds number of lo1’. 
Similarly, East, Sawyer & Nash (1979) present results from an approximate analytic 
solution given by East, Smith & Merryman (1977)) that suggest: 

(i) two different equilibrium layers are possible for m < 0 ;  
(ii) the smallest value of m for which an equilibrium layer can exist is Reynolds- 

number-dependent. (For a momentum-thickness Reynolds number of 106 the limit is 
m = -0-27.) 

In  contrast are Mellor & Gibson’s ( 1966) calculations which predict a single sequence 
of equilibrium layers terminating a t  m = - 0.23. These authors also develop a relation- 
ship between the integral thickness of an equilibrium layer and m which implies an 
(effectively) unique relationship between velocity-scale ratio uo/Ul and m. Mellor in 
1966 disputed Townsend’s result that for a given set of conditions two equilibrium 
layers were possible. In this he was joined by Bradshaw (1966) who attributed the 
result to Townsend’s assumption of a smooth join between two approximate analytical 
solutions for the inner and outer regions. Bradshaw states that, although both solu- 
tions are good approximations far from the join, the assumption is unlikely to be 
accurate a t  the join for layers with large velocity defects. He concludes that on the 
balance of probabilities only one equilibrium boundary layer can exist in a given 
pressure gradient. Bradshaw supports this conclusion in a later paper (Bradshaw 
1967) that presents calculations which use the method of Bradshaw, Perriss & Atwell 
(1967). These suggest that form = - 0.255 the same equilibrium condition is arrived a t  
by a range of layers which start with the same value of l J IS /v  (where 8 is the 
momentum thickness of the layer) at  different streamwise stations. The calculations 
also show that no equilibrium layer is possible for m < - 0.3. Head (1976), however, 
considers that if the experimental evidence is taken at face value it would suggest 
that a whole range of equilibrium layers should exist for m near - 0-25. He supports 
this with another set of calculations that suggests: 

(i) for m = - 0.35 no equilibrium layer is possible; 
(ii) for m = - 0.15 only one equilibrium layer is possible irrespective of initial con- 

ditions; 
(iii) for m = -0.255 a range of equilibrium layers is possible depending on the 

initial conditions of the layer. For this case, the calculations show that if the initial 
value of U,6/v is sufficiently large then the equilibrium layer will separate. 

The analysis presented here leads to a comprehensive account of equilibrium layers 
in adverse pressure gradients which helps to resolve many of these disagreements. 

A central thesis of this analysis is that both u, and velocity scales based on a are 
inappropriate for layers in moderate to strong adverse pressure gradients. Historic- 
ally, a was first used to describe layers near separation because Stratford’s results 
appeared to show that in these layers equation (5) replaced the logarithmic law in 
describing mean flow near the wall. However, it  has been shown subsequently that 
equation (5) cannot describe all the half-power distributions that have been observed 
in adverse-pressure-gradient layers in the region adjacent to the logarithmic law 
(Schofield & Perry 1972; Perry & Schofield 1973; Kader & Yaglom 1978; Yaglom 
1979). Thus equation ( 5 )  is not valid in all cases. 

Another argument in favour of velocity scales based on a that is often advanced 
(e.g. Stratford 1959, p. 3; Kader & Yaglom 1978, p. 310) starts by observing that near 
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FIGURE 1 .  Defect laws for boundary layers in adverse-pressure-gradient flows. (a) Kader- 
Yaglom defect law (taken from Kader & Yaglom 1978). (b) Schofield-Perry defect law (from 
Schofield & Perry 1972, also Perry & Schofield 1973). 

the wall of a boundary layer where inertia forces are small the equation of motion can 
be approximated by 

7 21 T o  -k p a y .  (7) 

I n  a strong adverse-pressure-gradient layer 01 is large and T~ is small; thus a t  small 
distances from the wall T is largely determined by p a y  rather than T ~ .  It is then 
postulated that the mean velocity a t  small distances from the wall will also depend 
on a rather than T ~ ,  which does not necessarily follow. Indeed if T o ,  which is a measure 
of the boundary layer’s response to its initial and boundary conditions, determines the 
mean velocity distributions in the viscous and logarithmic regions, it seems im- 
probable that in the adjacent half-power region it should be replaced by a which is a 
different type of variable, being one of the layer’s boundary conditions. It would seem 
more plausible to replace T~ with another boundary-layer-response variable. The 
present analysis does this by using a velocity scale rJm which is related to the maximum 
shear stress in the layer, T,, namely 

This velocity scale has several factors in its favour. It is the velocity scale of a half- 
power law which accurately describes all the half-power distributions that have been 
observed in moderate to strong adverse-pressure-gradient layers (Perry & Schofield 
1973). This half-power law is the innermost portion of a universal velocity-defect law 
for adverse-pressure-gradient layers which describes the mean flow from the free 
stream almost to the wall. I ts  validity has been demonstrated in Schofield & Perry 
(1972), Perry & Schofield (1973), Simpson, Strickland & Barr (1977), Samuel (1973), 
Samuel & Joubert (1974)’ Fairlie (1973), Perry & FairIie (1975), and is further demon- 
strated in this paper. Unlike equation ( 1 )  and the various defect laws based on up, 
the Schofield-Perry defect law has an invariant analytical form for all adverse pressure 
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gradients. Its validity is restricted to adverse pressure gradients sufficiently strong 
for 7, 2 $70 approximately (Perry & Schofield 1973).  Thus the analysis presented 
here is also restricted to equilibrium layers in which 7, 2 g~, ,  approximately. 

The analysis gives: 
(i) limits for the existence of equilibrium layers which relate to the initial and 

(ii) an explicit analytical function for the shear-stress profile of any equilibrium 

(iii) a simple method for prediction of the mean flow field of equilibrium layers. 
The results of the analysis represent an improvement on some aspects of the recent 

work by Kader & Yaglom (1978) )  who retain cx as a variable in their defect law for 
adverse-pressure-gradient layers. By retaining a, their analytical description of the 
mean profile requires a set of complicated equations separated by complex blending 
functions. Also the Kader-Yaglom defect law does not describe the data, as accurately 
as the Schofield-Perry defect law does (see figure 1). It is to be noted that if, in the 
dimensional analysis on which Kader & Yaglom’s work is based, cxS had been replaced 
by ?I;, the Schofield-Perry relations could have been derived. 

boundary conditions of the equilibrium layer; 

layer; 

2. Similarity laws in zero- and adverse-pressure-gradient boundary layers 
The accepted model for two-dimensional turbulent boundary layers in zero- 

pressure-gradient flow is a viscous sublayer immediately adjacent to the wall blending 
into the logarithmic law of the wall, 

_ -  u 1 9% - -In-++, 
U, K V ( 9 )  

where K ,  A are universal constants. The logarithmic law forms the innermost portion 
of a velocity-defect law which describes the mean profile from the sublayer edge to the 
free stream. This defect law is described by the expression 

u. - u 
-= 9*6( 1 - Y / A ) ~  

u, 

(where A = 0.3S*U1/u, is an integral layer thickness) over the full range of its validity 
(Hama 1954). 

The model proposed by Schofield & Perry is similar in form to this but applies to 
attached boundary layers in moderate to strong adverse pressure gradients (specific- 
ally layers in which 7, > #ro). The model consists of the same viscous sublayer and 
(a smaller) logarithmic law that tangentially joins the half-power law, 

where L is the distance from the wall to 7, and Us is a velocity scale. This half-power 
law forms the innermost portion of a velocity-defect law which describes the mean 
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FIGURE 2. Similarity laws for boundary layers. (a) Zero-pressure-gradient flow: 0, Klobanoff 
(1954). ( b )  Adverso-pressure-gradient flow: 0, Bradshaw & Ferriss (1965). 

profile from very near the wall out to the free stream. This defect law is accurately 
described by the expression 

(where B = 2-SSS*U,/Us is an integral layer thickness) over the full range of its 
validity. V, is a velocity scale found by extrapolating the half-power law to the wall 
and is related (Perry & Schofield 1973) to the velocity scale by 

(13) u, = 8(B/L)'U,,, 
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which is a notable equation in as much as it relates mean-flow parameters to a turbu- 
lent-flow parameter. 

Perry & Schofield ( 1  973) have also shown that the distance from the wall to the 
tangential junction of the logarithmic layer and the half-power layer (y,) is given by 

yc = 37. lug B/  UE, 

ZJ~ = 18.6c;BUf/U;. 
from which it follows that, 

Thus, for a boundary layer held at  incipient separation where c; = 0,  equation (15) 
gives yc = 0, implying no logarithmic layer and a half-power layer that extends to 
the wall.? The disappearance of the logarithmic region as separation is approached 
is consistent with Stratford’s results and with the well-known observation that the 
vertical height of the logarithmic region decreases as the strength of an adverse 
pressure gradient increases. The boundary layers considered in this report are all in 
moderate to strong adverse pressure gradient and hence have small logarithmic 
regions with half-power regions extending close to the wall. Consequently the 
Schofield-Perry model accurately described their mean-flow profiles from the free 
stream down to a few per cent of layer thickness from the wall (see figures 2 b, 5 and 7) .  
It is the basis for the analysis presented in $3 .  

The velocity scale appearing in the Schofield-Perry defect law, can be determined 
from the mean profile by adapting Clauser’s methodology to the half-power law. The 
Clauser (1954) method determines the velocity-scale ratio (u,/Ul) from the logarithmic 
law by rewriting equation (9) as 

plotting the mean profile on co-ordinates u/Ul, In (yU,/v) and comparing it with the 
family of straight lines for different values of u7/U, as illustrated in figure 2 (a). In a 
similar manner the velocity scale ratio U,/Ul can be determined from equation (1  1 b) .  
The mean profile is plotted on co-ordinates u/U,, (y/6*)* and is compared with the 
family of straight lines for different values of &Ill,, as illustrated in figure 2 ( b ) .  

3. Analysis 
Consider a two-dimensional turbulent boundary layer in an adverse pressure 

gradient which is sufficiently strong for r ,  b #r,, at all streamwise positions. For such 
a layer the Schofield-Perry defect law will give an accurate description of the mean 
profile from the free stream down to a small distance from the wall.$ Following the 
self-preserving analysis detailed in Townsend (1976) and Rotta (1962), self-preserving 
forms for the mean and fluctuating flow components are assumed using Schofield- 
Perry velocity and length scales, namely 

t Obviously this is only approximate as no account of the viscous sublayer has been taken. 
3 Experimental results from a variety of boundary layers indicate that this distance varies 

between about 1 and 4 per cent of total layer thickness. 
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where the analytic fit to f has been given above, and 
- 
U'V' = U:g(y /B) .  (17) 

These relations are substituted into the equation of mean motion in which the viscous 
and normal stress terms have been omitted. The continuity equation is first used to 
eliminate the mean vertical velocity and then integration of the equation of motion 
leads to 

wheref = f(y/B), g = g(y /B) ,  7 = y / B ;  ,u = e / B  and is the smallest (non-dimensional) 
distance from the wall at which f(7) accurately describes the mean velocity. Also 

Il(7) = p 7 .  IZ(7) = p d ? l .  I p  = so' fd7. 

For self-preserving flow, equation (18) must be identical in meaning for all x,  that 
is coefficients of functions of x must be zero or in constant ratio. The relations 

77, = axrn = u ( x - x ~ ) ~ ,  Us = bXm = b(x-x&m, B = C X  = c ( x - x ~ )  ( 1 9 ~ ,  b, C) 

satisfy this condition and are therefore the conditions for self-preserving or precise 
equilibrium flow. 

3.1. Shear-stress distribution 
An explicit expression for the shear-stress distribution in these layers may be derived 
from equation (1 8) by substituting into i t  the self-preserving conditions (equations 
19 a, by c) and separating out 7 / 4 p  L'? ( = - ( 2b2/a2) 9). This equation involves the 
unknown g(p) which can be replaced with an approximation following from the 
evaluation of equation (7)  a t  y = p B ,  namely 

Ba/U; can be evaluated as -mc using the self-preserving relations and this means 
that for p = 0.02 the relationship can be written 

(Wt U 2  

2b2 g(p) N - (0.04mc - c;). 

Substitution of equation (20) into the expression for the shear stress leads to 

t The smaller the value of p the more accurate this approximation becomes. It was found 
that provided p was within the experimental range of 0.01-0.04 its actual value had a very 
minor effect on calculations described below where a value of 0.02 has been used throughout. 
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FIGURE 3. Functions of q. 

where y is the entrainment parameter defined (Townsend 1976) as 

3.2. Free-stream velocity variation 

A relation between m, the free-stream velocity variation exponent, and the velocity 
ratio UJUq (= a/b) can now be derived. For the particular case of q = 1, where 
f (1 )  = 0 and 7(1) = 0, equation (21) can be rearranged to give 

(22) m = -  a2 a 
O*O2p+$ (311(1) + I U ~ ( C L ) ) - - ~ ~ ~ ( ~ ) - ~ ( I U ) I , ,  

which defines m in terms of profile parameters and hence can assume a range of values 
depending on the velocity ratio UJU, ( =a/b)  and c;/y. Functions of q appearing in 
the above equations are plotted in figure 3. 
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3.3. Pressure-gradient parameters 
Clauser's original non-dimensional force ratio or pressure-gradient parameter may be 
written 

It is argued here that, while this is the relevant parameter for flows in pressuregradients 
near zero where u, is relatively large and dominant, it  is inappropriate for flows in 
moderate to strong pressure gradients where u, is relatively small and of minor 
importance. That is, the velocity scale of the logarithmic region is inappropriate for 
flows with small (or even disappearing) logarithmic regions and Us, the velocity scale 
of the half-power region, should replace it. If this is the case the pressure-gradient 
parameter for layers in moderate to strong pressure gradient should be 

and by using the definition B = 2.86b'*U1/& and equations (19) for self-preserving 
flow p* can be rewritten as 

/3* = -mca/2*86b, (24) 

which for the equilibrium layers analysed here must be constant. 

3.4. Existence limits for equilibrium layers 
There are three limiting conditions for the equilibrium layers analysed here. They are: 

(i) m < 0, the condition for adverse-pressure-gradient flow; 
(ii) c; 2 0, the condition for attached flow; 
(iii) 7, 3 #ro, the condition for moderate to strong adverse-pressure-gradient flow 

in which the Schofield-Perry defect law applies. 
Condition (ii) can be expressed in terms of flow parameters by substituting c; = 0 

in equation ( 2 2 ) ,  giving 

Condition (iii) can also be made explicit by evaluating the general equation for the 
shear-stress profile (equation ( 2 1 ) )  at the maximum stress condition, i.e. a t  
7 = vm = L / B ,  where ~(q,) = 7,. This leads to 

m = - J / K ,  
where 
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FIGURE 4. Limits of equilibrium flow. A, Ludwieg & Tillinann (1949), mild adverse pressure 
gradient; B, Clauser (1954), flow 1 ;  C, Clauser (1954), flow 2; D, Bradshaw (1966); E, Bradshaw 
& Ferriss (1965); F, Bradshaw (1967); G, Stratford (1959), flow 5; H, Samuel (1973), flow 2; 
I ,  Stratford (1959), flow 6; a, East et al. (1979), flow 6;  6, East et al. (1979) flow 6;  b, East 
et al. flow 7 .  

and at the limiting condition 

we have 
7, = #ro or U k  = 8%; 

The value of yVn can be evaluated by using equation (13) 

vm = L / B  = G4U:n/Uf,  

which with equation (27) can be rewritten 

?Im = 48cj.a2/b? 

These equations define a space with co-ordinates m, a/b within which all equilibrium 
layers exist. Most of this space is shown in figure 4. 

3.5. Entrainment and skin friction 
For any equilibrium layer, 

U,/U, = a /b  = const. 

by equations (19a, b) .  I n  addition the layer growth rate c is constant by equation 
(19c). Hence the entrainment rate of an equilibrium layer y( = (n/b - 4) c) is constant. 
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FIGURE 5. Half-power distributions of mean velocity. ( a )  0, Clauser (1954), flow 2. ( b )  0, 
Bmdshaw (19GG). --, equation ( 1  I b )  ; 0 ,  data point closest to 0.026. 

As the exponent of free-stream velocity variation m of an equilibrium layer is 
constant, and a l b ,  y are also constant, equation ( 2 2 )  implies that  c; is constant. It is 
important to note, however, that the wall shear stress enters the analysis through the 
wall-matching condition, equation ( Z O ) ,  which is an approximation. If the analysis 
had been restricted to the outer 98 % of the layer in which the defect law was valid 
then it would yield the result that 7( ,u ) /$pU;  is constant, which is a precise result. 
However, as r ( p )  is not a useful parameter the analysis was extended to  cover the 
whole layer by relat'ing 7(,u)/$pU; ( = - 2b2g(p)/a2) to the wall shear via an approxima- 
tion, equation ( Z O ) ,  which can be written 

c; 'v 044mc - 2g(,u) (b2/a2) = const. 

This equation implies that c; should be approximately constant in an equilibrium 
layer. 

Approximately constant skin friction is a corollary of this theory and arises from 
the wall-matching condition. I n  contrast, the Rotta and Townsend analyses of 
equilibrium layers require a constant skin-friction coefficient as a condition of their 
existenco. 
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FIGURE 5 b .  For legend see p. 103. 

4. Comparison with data 
The literature was searched for attached flows in moderate to strong adverse 

pressure gradient in which the free-stream velocity distribution could be described 
by equation (19a).  Twelve such flows were found, analysed and compared with the 
theoretical predictions. For nine of the flows (Ludwieg & Tillmann 1949, mild adverse- 
pressure-gradient flow; Clauser 1954, flows 1 and 2; Bradshaw & Ferriss 1965; Brad- 
shaw 1967; Stratford 1959, flows 5 and 6; Samuel 1973, flow 2; Bradshaw 1966) full 
details of the results were available. These data will be referred to as the primary data. 
For the other three flows (East et al. 1979, flows 5 , 6 , 7 )  results were reported by East & 
Sawyer (1979) with some additional details given in East, Sawyer & Nash (1979). 
However, for these flows, tabulated data for only one profile per layer has been 
published in East et aE. ( 1979). Thus, in order to compare these results with theoretical 
predictions it was necessary to make several assumptions. The accuracy of these 
assumptions is difficult to estimate and hence comparisons between the data of 
East et al. and theory cannot carry the same weight as comparisons involving the 
primary data. 

Firstly, mean profiles were analysed to ensure they contained half-power distribu- 
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FIGURE 6. Parameters for equilibrium layers: ( a )  Clauser (1954), flow 1; 
(b)  Stratford (1  959), flow 5. 

tions near the wall. All 49 profiles exhibited half-power distributions which extended 
to within a few per cent of layer thickness from the wall, as illustrated in figure 5.  By 
comparing these distributions with the family of lines given by equation (1 1 b )  the 
velocity ratio U J V ,  was determined for each profile. In the primary data it was found 
that CJJUs = a/b was closely constant in each layer as required by theory.? Figure 6 
shows some typical results.$ Using these values of Us the mean profiles were tested 
against the Schofield-Perry defect law (equation (12)) for the full layer. Typical 
results are shown in figure 7. Agreement between the data and equation (12) is good 
and typical of previous results for non-equilibrium layers (Schofield & Perry 1972; 
Perry & Schofield 1973; Simpson el al. 1977; Perry & Fairlie 1975; Samuel 1973). 

As U,/V, was known, the integral layer thickness B could be calculated from its 
definition. In the nine primary data layers, variation of B with distance showed good 

t For the data of East et al. it was assumed that in each of the three layers the single available 
value of a/b was the experimental average of the layer. 

$, Tabulat,erl data is available from the autlior. 
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linearity (see figure 8) and, therefore, the growth rates of the layers could be taken as 
constant. Thus the third of equations (19) was satisfied and with it all conditions for 
self-preserving or equilibrium flow for all the primary data. The variations of B in the 
layers of East et al. were unknown. 

In  each graph of B versus x in the primary data, the straight line of best fit deter- 
mined values for c and x,,, the effective origin of each layer. Layer growth rates did not 
show the constancy between different layers assumed by Kader & Yaglom (1978). In 
fact, they showed considerable variation (0.03 to 0.10) around the value of 0-063 taken 
as constant by Kader & Yaglom (1978). East & Sawyer (1979) present results showing 
a fairly linear growth of momentum thickness with distance for their three layers. 
An estimate of c for these three layers was obtained from 

c N 2.86 2 H dO/dx, 
b 

where H = S*/O. The accuracy of the estimate depends on the magnitude of dH/dx, 
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FIGURE 7. Mean velocity profiles on Schofield-Perry defect co-ordinates. ( a )  0, Ludwieg & 
Tillmann (1949), mild adverse pressure gradient; (6) 0, Bradshaw (1967). --, equation (12).  
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which has been assumed to be negligible but appears finite in the graphs presented by 
East et al. (1979). Another assumption involved here is that the effective origins 
(value of xo) for 0 and B coincide. 

The entrainment and pressure-gradient parameters for the primary data were 
calculated and c; determined from Clauser charts (Clauser 1954). All these parameters 
were substantially constant in each layer (see figure 6) as required by the analysis. 
Skin-friction data for the layers of East et al. show a greater variation (see East & 
Sawyer 1979, p. 6). 

Typical free-stream velocity variations with distance are shown for several layers 
in figure 9. Logarithmic co-ordinates have been used to show the linear logarithmic 
variation required by equation (1 9). Previously determined values of xo were used to  
calculate the abscissae x - x,,. All velocity variations have good linearity on these 
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0, Stratford (1959), 

co-ordinates.? The lines joining points on the figure have slopes predicted theoretically 
by equation (22) and are in good agreement with the data, which is most encouraging. 

This analysis of data enables the layers to be positioned on the m versus a / b  diagram 
shown in figure 4. All layers fall within the limits set by equations (25) and (26), thus 
providing a degree of validation for the analysis. The positions of the primary data 
layers are represented on figure 4 by large circles because for each layer the experi- 
mentally derived values of c i ,  y and alb show some (small) variation1 and thus the 
position of the layer on m, a lb  co-ordinatesvaries slightlywith x. For each of the three 
layers of East et al., data for only one streamwise station are available and hence these 
layers are represented on figure 4 by single solid dots. 

The co-ordinate variables of figure 4 are the two major parameters that determine 

t This fact is not significant as it was found that a fairly wide range of values for x,, resulted 
in good linearity in the data on these log-log co-ordinates. For this reason xo was not determined 
from these plots. 

$ Variation of c;, y and alb  implies a variation in m via equation (22). 
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FIGURE 9. Free-stream velocity variation with distance. ( a )  0, Bradshaw & Ferriss (1965). The 
slope given by Bradshaw & Ferriss agrees with that given by equation (22). (b) 0, Bradshaw 
(1967); - -, the slope given by Bradshaw. ( c )  0, Stratford (1959), flow 5. --, equation (22) .  

the development of an equilibrium layer. m is a measure of the severity of the pressure 
gradient applied to the layer which is the major boundary condition of the layer. 
Another boundary condition would be surface roughness.? The other ordinate of 
figure 4 U,/U, defines the shape of the mean velocity profile entering the equilibrium 
pressure gradient and hence is the layers' major initial condition. The other initial 
condition is the initial Iayer thickness which is shown later to  have a minor effect on 
equilibrium layer development. 

and hence the shear stress ~ ( p ) .  
t Surface roughness would affect these oquilihriurn layers by increasing the wall shear stress 
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FIGURE 10. Equilibrium shear-stress profiles. A, Ludwieg & Tillmann (1949), mild adverse 
pressure gradient; B, Clauser (1954), flow 1; C ,  Clauser (1954), flow 2; D, Bradshaw (1966); 
E, Bradshaw & Ferriss (1965); F, Bradshaw (1967); G, Stratford (1959), flow 5 ;  H, Samuel 
(1973), flow 2; I, Stratford (1959), flow 6. The arrows indicate the positions of 7,. Note that the 
right-hand and left-hand scales differ. 

Figure 4 implies that no equilibrium layer is possible in flows with m less than - 0.3, 
which is the limit given by Bradshaw (1967) from calculations using the method of 
Bradshaw et al. (1967). Head’s conclusion that no equilibrium layer is possible for 
m = -0.35 is also in agreement with this limit. Although Mellor & Gibson’s (1966) 
conclusion that no equilibrium layer is possible for m < -0.23 disagrees with this 
result, a possible reason for their conclusion is given below. The calculations of 
Townsend (1976) and East et al. (1979) give slightly lower limits for m that are 
Reynolds-number dependent. 

Figure 4 implies that for a given boundary condition (given value form) it is possible 
for a large range of equilibrium layers with different initial velocity ratios to exist. 
The experimentally observed layers plotted on figure 4 indicate that this occurs in 
practice. Thus Mellor & Gibson’s (1966) conclusion that there is only a single sequence 
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FIGURE 1 1 .  Equilibrium shear-stress profiles. (a)  Moderate adverse pressure gradient (Bradshaw 
1966); ( b )  medium adverse pressure gradient (Samuel 1973); (c) strong adverse pressure gradient 
(Bradsliaw & Ferriss 1965); ( d )  moderate adverse pressure gradient (East et al. 1979, layer 5); 
( e )  medium adverse pressure gradient (East et al.  1970, layer 6) ;  ( f )  strong adverse pressure 
gradient (East r t  nl .  1979, layer 7 ) .  -- , profile predicted by equation (21); 0, expeiimental 
data point. 

of equilibrium layers is not supported by this analysis but Head’s (1976) contention 
that a whole range of equilibrium layers exist for m near - 0.25 is supported. 

Mellor & Gibson (1966) and Townsend (1960, 1976) have analysed the idealized 
Stratford flow, Pc = co, using different assumptions and methods. Both analyses give 
m = - 0.23 for this case whereas the present analysis would allow a large range in the 
boundary condition (along the c; = 0 curve in figure 4) to produce an ideal Stratford 
layer. Townsend employed a velocity ratio u,/74 in which the velocity scale uo was 
determined by extrapolating an assumed mean profile down to the wall and was, 
therefore, somewhat similar to the velocity scale used in the present work. Townsend’s 
analysis gives u/Vl = 0.81 at = - 0-23, which is in fair agreement with figure 4, 
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which gives U,/U, N 0.94 a t  m = - 0.23 for c; = 0. The actual Stratford flow nearest 
the condition c; = 0 is near this point with values c; = 0.4 x lo3, m = - 0-238, 
U1/Q = 0-93. Analytical results for Stratford’s flows must, however, be treated with 
caution because, firstly, these flows are very close to separation and the normal stress 
terms which are significant near separation have been dropped from the equations of 
motion. Secondly, the two-dimensionality of Stratford’s flows were suspect because 
of their large ratios of boundary-layer thickness to tunnel width. 

4.1. Shear-stress projiles 
Unlike other analyses of equilibrium boundary layers, the analysis presented here 
employs a general analytical expression for the mean flow profile (equation (12)) and 
hence it is possible using equation (21) to obtain the (invariant) shear-stress profile 
for any equilibrium layer from a knowledge of m, alb, c; and c. As the experimentally 
derived values of ci and UJU, showed some small variation in each layer the folIowing 
calculations are based on average values. Values for ?n came from equation (22). 
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The predicted shear-stress profiles for the nine primary data layers are shown in 
figure 10. The profiles are forced to agree with the boundary condition a t  the wall 
where 7(0)/-]ipU! = c;. However, in all cases the calculated value of shear stress at the 
free stream, where no agreement is forced, was zero to a very high order of accuracy. 
This agreement a t  7 = 1 did not occur in the predicted shear-stress profiles for the 
three equilibrium layers of East et al. (see figure 11 d ,  e , f ) .  These inaccuracies are 
probably due to errors in the assumptions that were made in analysing these data. 
Figure 10 shows that qm, the position of maximum shear stress, moves away from the 
wall as the ratio increases, varying from 0-3 for the limiting case of ~ , , / 7 ~  = 1.5 
to about 0-45 for the largest shear-stress ratio considered. This movement of 7, was 
noted by East et al. (1979) in their experimental shear-stress profiles. 

Fortunately shear-stress profiles in seven of the layers were measured by the 
authors allowing these predicted profiles to be compared with data. Figure 11 shows 
the comparisons.t For the primary data, figures 11 (a, b,  c) show comparisons for a 
moderate (Bradshaw 1966), medium (Samuel 1973) and strong (Bradshaw & Ferriss 
1965) adverse-pressure-gradient layer. For these three layers the agreement is good 
and probably within the experimental uncertainty of measuring 7(7). The agreements 
could be marginally improved if the experimentally measured value of c; a t  the shear- 
stress measuring station was used rather than the average of the experimental values 
for the whole layer. These differences were, however, small. For the three profiles of 
East et al., flows 5, 6, 7, shown in figures 11 ( d ,  e , f )  the agreement is not as good. 
However, in these cases the predicted profiles are inaccurate (as 7(  1)  is not zero but 
substantially negative) owing to inaccuracies in the estimated values for m, a / b  and 
particularly y . Experience with these calculations suggest that a variation in para- 
meters that will give 7(  1)  = 0 will tend to increase 7, and improve agreement with 
these data. 

The remaining shear-stress measurements are by Bradshaw (1967) for a flow that 
developed initially in zero pressure gradient before approaching and entering a strong 
equilibrium adverse pressure gradient. The approach of the shear-stress profiles 
towards their new equilibrium form is shown in figure 12 where successive experi- 
mental shear-stress profiles are compared with both the shear-stress distribution the 
layer had in zero-pressure-gradient flow and the distribution predicted for the new 
equilibrium-pressure-gradient flow. The layer adjusts, firstly, near the wall where the 
time scale of the turbulence is small. Further modification of the shear-stress profile is 
slower and works outwards from the wall. In  this case, the process is all but complete 
at the last recorded shear-stress profile where the agreement between experiment and 
theory is good. 

4.2. Mean-Jow prediction 
The above account of equilibrium layers can be turned into a simple prediction 
method for layers in adverse-pressure-gradient flow. As well as being useful in itself 
this calculation procedure helps to resolve some of the disagreements in the literature 
on equilibrium layers. 

We start by describing the mean velocity profile of these layers with the following 
set of expressions : 

of these layers. 
f The author is indebted to Professor Bradshaw for providing original data. points for two 
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FIGURE 12. Shear-stress profiles of a boundary layer moving from zero pressure gradient to en 
equilibrium adverse pressure gradient for: (a) z = 0.61 m; (b) x = 0.76 m; (c) z = 0.91 m; 
(d) z = 1.067 m; (e) z = 1.219 m; (f) 5 = 1.52 m; (9)  z = 1.829 m; (h) x = 2.13 m. 0, experi- 
mental data of Bradshaw (1967); --, profile predicted by equation (21) for the equilibrium 
adverse-pressure-Rradient layer. 
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FIGURE 13. Mean velocity profiles from Bradshaw (1966) for ‘a = -0.15’. 
0, experimental data; --, predicted profile. 

(i) for the viscous sublayer from the wall ( y  = 0) to the intersection of the extra- 
polated linear and logarithmic distributions a t  y = lOv/u, 

U ( Y )  = Y U W  (29) 

(ii) for the logarithmic region from y = lOv/u, to its junction with the outer defect 
law a t  y = yc ( = 37.1~; B/U,2) 

(9) 
YUr u ( y )  = 2 . 4 4 ~ ~  In - + 5 . 0 ~ ~ ;  
V 

(iii) for the outer defect law from y = yc to y = B 

u ( y )  = U1-U,+0-4Us 
2B‘ 

Prediction of a particular layer commences by matching initial and boundary 
conditions to the assumption of equilibrium Aow in order to determine the charac- 
teristic constants of the flow m, c, xo. The exponent m is obtained by fitting the free- 
stream velocity data to  equation (1 s), which may be rewritten 

log U, = m log (x - x,,) - log a.  

As initially xois unknown it is taken as zero to give a first estimate ofc. A corresponding 
estimate of c ,  the layer growth rate, is obtained using this estimate of rn in equation 
(22) which can be rewritten as 
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FIGURE 14. Mean-flow parameters from Stratford (1959), flow 5. 
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Values for u, and U, in this equation are obtained from the initial profile. This estimate 
of c and the initial layer thickness are substituted into equation (19b) 

to give a new estimate for xo. The process is then iterated until values for m, c and xo 
are stable. 

To calculate any velocity profile downstream of the initial profile requires local 
values of u7, Us and B. These are obtained by the simultaneous solution of three 
equations, two of which, equations (22) and (19b),  were used above. The third equa- 
tion is empirically based. It is derived from the observation reported by Perry & 
Schofield (1973) that the inner logarithmic law tangentially joins the outer defect law 
with no discernible blending or crossover region. Thus, equating the mean velocity 
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FIGURE 15. Shear-stress profiles from Bradshaw (1966) for: (a) a = -0.255, (b )  a = -0.15. 
0, experimental data; -, predicted profile using predicted parameters in equation (21). 

given by the outer law (equation (1 1 b ) )  and the inner logarithmic law leads tto 

The last term in this equation involves the logarithm of the Reynolds number based 
on layer thickness. Values of u, and Us obtained from the simultaneous solution of 
equations (22) and (30) will therefore vary (slowly) as ln(BUl/v) varies. These 
variations in u, and Us are once again the result of an (empirical) matching of the outer 
equilibrium flow with the wall flow. Similar weak Reynolds-number dependences 
appear in the calculations of Townsend (1976), Mellor & Gibson ( 1  966), and East et al. 
(1979). 

This calculation procedure has been applied to the nine primary data 1ayers.t 
Figure 13 shows typical comparisons between predicted and measured mean velocity 
profiles. Figure 14 shows similar comparisons for the velocity ratios UJU,, uT/Ul, 
form factor S* /B  and momentum thickness. At the 1968 conference on computation 
of turbulent boundary layers (Kline et al. 1968) comparisons of the type shown in 
figure 14 were considered the more searching test of a prediction method. The agree- 
ments obtained here, for the nine layers, were as good or better than the best obtained 
by any of the methods presented at  the Stanford Conference for these layers. Of course 

t The data of East et aS. (1979) were exchided because only one mean velocity profile was 
available for each layer. 
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the present method can only apply to layers in moderate to strong adverse pressure 
gradients. However, unlike other prediction methods the present method can predict 
the shear-stress profiles across a layer. Examples of predicted shear-stress profiles 
using predicted parameters in equation (21) are shown in figure 15. The agreement 
obtained between predicted and measured profiles is not as good as that obtained 
previously using equation (21) with measured values of the parameters (see figure 11). 
However, these shear-stress profiles are sufficiently accurate to  giye a useful pre- 
diction. 

This calculation method could be extended to adverse-pressure-gradient layers in 
moving equilibrium. A layer in moving equilibrium has boundary conditions that 
change continuously and relatively slowly so that the layer can be considered as 
continuously moving from one equilibrium state to another and at any position in its 
development to be locally in equilibrium. I n  such a layer the characteristic constants 
m, c, xo will have to be successively redetermined as the calculation proceeds down- 
stream. I n  each of these redeterminations of m, c and xo a profile predicted by the 
method will be used as the initial condition for the next portion of equilibrium flow. 

In the calculation procedure the simultaneous solution of equations (22) and (30) 
give two solutions for every profile: a ‘ type-1 ’ solution in which a moderate velocity 
defect is associated with a large wall stress, and a ‘type-2’ solution in which a very 
large velocity defect is associated with a much lower wall she& stress. The relevant 
solution for any layer is the one that gives values of UJU, (and u,/U,) that  agree with 
the initial conditions. Of the layers analysed here four had type-1 solutions and the 
remaining five had type-2 solutions. Townsend’s (1960, 1976) analysis also predicts 
two possible equilibrium layers for a single set of initial and boundary conditions. His 
analysis of the Clauser (1954) layer 1 shows it to be a type-1 solution which agrees 
with the present analysis. However, for the Clauser (1954) layer 2 his analysis shows 
the layer to  be in ‘an area of ambiguous development and its observed development 
is not described by this theory’ (Townsend 1960). Figure 16 shows that this layer is 
adequately described by the present theory and is a type-2 solution. Townsend (1976, 
p. 276) gives m = - 0.25 as the lower limit above which there is only one solution with 
positive u,. However, the present resultst show that Lhe Stratford (1959) flows 5 and 6 
and the Clauser (1954) flow 1 have values of m greater than - 0.25 and yet have two 
solutions with positive values of u,. 

The theoretical limit for only one attached solution can be obtained simply by 
substituting the condition u, = 0 into equation (30). This yields U, = U,, which is the 
condition of the outer law extending to the wall (i.e. no logarithmic layer) and is an 
approximate result as the sublayer has not been considered. Substitution of bi = Us 
into equation (22) yields m = - 0.23 as the upper limit for two attached solutions.$ 
The primary data contain only one layer in which m > - 0.23, the flow by Bradshaw 
(1966) ‘ a  = - 0.15’, and the present calculation method did give only one attached 
solution. Bradshaw’s (1966) criticism and explanation of the two solutions given by 
Townsend’s analysis does not apply to this analysis. The present analysis does use the 
same assumption that Townsend used, that there is a smooth junction between the 

t Detailed prediction results for the primary data layers are available from the author. 
$ It is possible that Mellor & Gibson’s (1966) conclusion of a single series of equilibrium layers 

terminating at rn = -0.23 is tho result of their analysis yielding only the type-2 solution 
equilibrium layers. 
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FIGURE 17. Equilibrium layers (primary data). 0, actual equilibrium layer; 0, predicted 
equilibrium layer; A, alternative equilibrium layer. Letters identify layers listed in caption to 
figure 4. 

mathematical expressions for the inner and outer regions of the layer. However, in 
this case it has been demonstrated empirically by Perry & Schofield (1973) and 
Schofield & Perry (1972) that the assumed models for the two regions join tangentially 
with no blending region and that these mathematical expressions accurately describe 
the experimental data in the junction region. 

The equilibrium layers that have been predicted are plotted on m, UJU, co-ordinates 
in figure 17 and are all close to the positions of the actual observed equilibrium layers. 
The second solutions for alternative equilibrium layers are also shown. They are 
generally well removed from the measured layers but are within the limits for equilib- 
rium layers. Only the second solution for the Stratford flow 6 fell outside the limits 
and is not shown in the figure. 

Finally, we can give an interpretation of Head’s (1976) calculations for layers with 
m = - 0.15, - 0,255. For the m = - 0.15 case, Head’s calculations suggested that only 
one equilibrium layer was possible, irrespective of the initial layer thickness. The 
calculations consisted of a series of predictions for layer development with differing 
initial layer thickness but with set boundary conditions (m = - 0-15) and set initial 
conditions (initial value of S * / B  held constant). The calculations showed several 
boundary-layer developments apparently converging on a single equilibrium condi- 
tion but were not continued far enough to be conclusive. In the present theory for 
flows with m near - 0.15 a single (attached) solution is expected for a given initial 
boundary-layer shape Ul/U9. Increasing the initial layer thickness causes m, c and x,, 
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to change and layer thicknesses downstream of the initial position to increase. The 
effects on the two solution curves, equations (22) and (30)) are in opposite directions 
and to a certain extent self-cancelling. However, the net effect is to lower slightly the 
solution values of u, and Us. Thus this conclusion of Head may be correct to a first 
approximation only. 

For the case of m = - 0.255 and an invariant initial profile shape, Head’s calcula- 
tions predict that a range of equilibrium layers are generated for different initial layer 
thicknesses, and that, for initial layer thicknesses greater than twice the actual value, 
the layer will separate before an equilibrium layer can be established. As m < - 0.23 
the present analysis predicts two possible layers, only one of which will have the correct 
velocity ratio. Calculations for this case show that the values of u, and V, change very 
little for a doubling of the initial layer thickness. Furthermore, u, did not become 
negative even for initial thicknesses one hundred times the actual value. Thus, this 
solution of Head’s is not supported and indeed it is difficult to envisage a physical 
mechanism to explain Head’s result of a separation induced in a layer by increasing 
its initial thickness while holding other non-dimensional ratios constant. 

5. Conclusions 
Analysis of equilibrium boundary layers using the length and velocity scales of 

Schofield and Perry have several significant advantages. Firstly, the scales do not 
need modification to describe near-separating layers in very severe pressuregradients. 
Secondly, the Schofield-Perry defect law, which is the basis of the analysis, has the 
same analytical expression for all medium to strong adverse-pressure-gradient layers 
and this allows shear-stress profiles of equilibrium layers to be quite accurately 
predicted. Thirdly, the limits of the Schofield-Perry theory can be translated into 
limits in the initial and boundary conditions within which these equilibrium layers 
will be produced. These limits are consistent with results from experimental layers and 
with several previous calculations using approximate closure hypotheses. 

This work gives a unified description of equilibrium layers in moderate to strong 
adverse pressure gradients. The majority of results by other authors are consistent 
with this description and in a few cases apparent disagreements between authors can 
be resolved by reference to it. Specifically the present analysis is in agreement with 
the following particular conclusions: 

(i) no equilibrium layer is possible for m < - 0.3 (Head 1976; Bradshaw 1966); 
(ii) for a given set of initial and boundary conditions two types of equilibrium layer 

are possible, one with large wall stress and the other with a lower wall stress (Townsend 
1960; East et al. 1979) -both types of layer have been observed; 

(iii) for equilibrium flows in which m > -0.23 only one (attached) equilibrium 
layer is possible (Head 1976; Blellor & Gibson 1966); 

(iv) for a given free-stream boundary condition within the equilibrium range 
( -  0.3 < m < - - 0.1) a wide range of equilibrium layers are possible (Head 1976). 
For a given value of m the particular equilibrium layer that will develop depends on 
the initial conditions, mainly the initial velocity ratio. 
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